
Generative Adversarial Networks Zoo
with mathematics deduction

Yuang (Dennis) Guo

Boston College

May 14th

What is GAN?

Generative Adversarial Networks (GANs) are a class of artificial intelligence algorithms
used in unsupervised machine learning, implemented by a system of two neural
networks contesting with each other in a zero-sum game framework.

Example

Architecture of GANs
▶ Generator: Creates new data instances.
▶ Discriminator: Evaluates them for authenticity; accepts or rejects the generator

output.

Figure: Basic GAN architecture

Generator Architecture and Visualization

class Generator(nn.Module):

def __init__(self, input_size=100, num_classes=784)
:

super(Generator, self).__init__()
self.layer = nn.Sequential(

nn.Linear(input_size, 128),
nn.LeakyReLU(0.2),
nn.Linear(128, 256),
nn.BatchNorm1d(256),
nn.LeakyReLU(0.2),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Linear(512, 1024),
nn.BatchNorm1d(1024),
nn.LeakyReLU(0.2),
nn.Linear(1024, num_classes),
nn.Tanh()

)

def forward(self, x):

y_ = self.layer(x)
y_ = y_.view(x.size(0), 1, 28, 28)
return y_

Discriminator Architecture and Visualization

class Discriminator(nn.Module):

def __init__(self, input_size=784, num_classes=1):

super(Discriminator, self).__init__()
self.layer = nn.Sequential(

nn.Linear(input_size, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, num_classes),
nn.Sigmoid(),

)

def forward(self, x):

y_ = x.view(x.size(0), -1)
y_ = self.layer(y_)
return y_

criterion = nn.BCELoss()
D_opt = torch.optim.Adam(D.parameters(), lr=0.0002,

betas=(0.5, 0.999))
G_opt = torch.optim.Adam(G.parameters(), lr=0.0002,

betas=(0.5, 0.999))

for epoch in range(max_epoch):

for idx, (images, _) in enumerate(data_loader):

Training Discriminator
x = images.to(DEVICE)
x_outputs = D(x)
D_x_loss = criterion(x_outputs, D_labels)

z = torch.randn(batch_size, n_noise).to(DEVICE)
z_outputs = D(G(z))
D_z_loss = criterion(z_outputs, D_fakes)
D_loss = D_x_loss + D_z_loss

D.zero_grad()
D_loss.backward()
D_opt.step()

if step % n_critic == 0:
Training Generator
z = torch.randn(batch_size, n_noise).to(

DEVICE)
z_outputs = D(G(z))
G_loss = criterion(z_outputs, D_labels)

G.zero_grad()
G_loss.backward()
G_opt.step()

MinMax Loss Function for GANs

The MinMax loss function for a GAN is expressed as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G (z)))]

▶ G is the generator, which tries to minimize this function against D.

▶ D is the discriminator, which tries to maximize this function.

▶ x are samples from the real data distribution pdata.

▶ z are input noise variables from distribution pz.

Derivation for the Value Function

The value function for a GAN is given by:

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G (z)))]

To find the optimal discriminator, we calculate the derivative of V (D,G) with respect
to D and set it to zero. The derivative is given by:

∂V

∂D
=

∂

∂D

(
Ex∼pdata(x)[logD(x)]

)
+

∂

∂D

(
Ez∼pz(z)[log(1− D(G (z)))

)
This simplifies to:

∂V

∂D
=

pdata(x)

D(x)
− pz(z)

1− D(G (z))

Setting ∂V
∂D = 0 for optimality, setting y = G (z), we find:

pdata(x)

D(x)
=

pg(x)

1− D(x)

From the optimality condition, the optimal D(x) that discriminates between real data
x and generated data G (z) is:

D(x) =
pdata(x)

pdata(x) + pg (x)

where pg (x) is the density of generated data. This form of D(x) maximizes the
probability of correctly identifying real and generated samples.

Replace Value Function using JS-Divergence

By substituting the optimal discriminator D(x) into the objective function, we have:

V (D∗,G) = Ex∼pdata(x)

[
log

(
pdata(x)

pdata(x) + pg (x)

)]
+ Ex∼pg(x)

[
log

(
1− pg (x)

pdata(x) + pg (x)

)]
The Jensen-Shannon divergence between two distributions pdata and pg is defined as:

JS(pdata∥pg) =
1

2
Ex∼pdata

[
log

2pdata(x)

pdata(x) + pg (x)

]
+

1

2
Ex∼pg

[
log

2pg (x)

pdata(x) + pg (x)

]
The optimal V (D,G) can be linked to the Jensen-Shannon divergence:

V (D,G) = −2 log 2 + 2JS(pdata∥pg)

When pg = pdata, the JS divergence reaches its minimum of 0, and hence:

minV (D,G) = −2 log 2

Backpropagation with Gradient
The Binary Cross-Entropy Loss for a single data point with true label y and predicted
probability ŷ is defined as follows: For a batch of data, the loss is usually computed as
the average over all instances:

BCELoss = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (1)

Figure: Backpropagation for GAN

Shortcoming and Improvement

Figure: 1. Diminished Gradient

Figure: 2. No Convergence

Figure: 3. Loss ̸= quality

Figure: 4. Highly sensitive to hyperparameters

WGAN and WGAN-GP

Figure: Visualization for Vanishing Gradient

Mathematics Derivation for Wasserstein GAN

The Wasserstein distance is the minimum cost of transporting mass in converting the
data distribution p to the data distribution q. It is mathematically defined as the
greatest lower bound (infimum) for any transport plan:

W (Pr ,Pg) = inf
γ∈Π(Pr ,Pg)

E(x ,y)∼γ [∥x − y∥]

where Π(Pr ,Pg) denotes the set of all joint distributions γ(x , y) whose marginals are
Pr and Pg , respectively.

L = Ex∼Pr [D(x)]− Ez∼Pz [D(G (z))]︸ ︷︷ ︸
Original WGAN Loss

+λEx̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2]︸ ︷︷ ︸
Gradient Penalty

(2)

Hint: Kantorovich-Rubinstein duality and 1-Lipschitz

DCGAN

Figure: Deep Convolution Generative Adversarial Network

Conditional-XXX-GAN

Figure: Conditional + ANY GAN

Hint: From unsupervised model to semi-supervised model

Enjoy the GAN zooooooooo!

	Introduction
	Example
	Architecture
	Shortcomings and Improvements
	WGAN and WGAN-GP
	Overview
	Mathematical Derivation

	DCGAN
	Conditional-XXX-GAN
	Visualization

