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What is GAN?

Generative Adversarial Networks (GANSs) are a class of artificial intelligence algorithms
used in unsupervised machine learning, implemented by a system of two neural
networks contesting with each other in a zero-sum game framework.
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Architecture of GANs

» Generator: Creates new data instances.
» Discriminator: Evaluates them for authenticity; accepts or rejects the generator
output.
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Figure: Basic GAN architecture



Generator Architecture and Visualization
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class Generator (nn.Module) :

Frequency
Noise Value

def _ init_ (self, input_size=100, num_classes=784)

super (Generator, self).__init_ ()

self.layer = nn.Sequential (
nn.Linear (input_size, 128),
nn.LeakyReLU(0.2), -0.8

Index

nn.Linear (128, 256), 0 20 40 60 80
nn.BatchNormld (256),
nn.LeakyReLU(0.2),

nn.Linear (256, 512),
nn.BatchNormld (512),
nn.LeakyReLU(0.2),

nn.Linear (512, 1024),
nn.BatchNormld(1024),
nn.LeakyReLU(0.2),

nn.Linear (1024, num_classes),
nn.Tanh ()
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def forward(self, x):

]

y_ = self.layer (x)
y_ = y_.view(x.size(0), 1, 28, 28)
return y_




Discriminator Architecture and Visualization

criterion = nn.BCELoss ()

D_opt = torch.optim.Adam(D.parameters(), 1lr=0.0002,
betas=(0.5, 0.999))

G_opt = torch.optim.Adam(G.parameters(), 1lr=0.0002,
betas=(0.5, 0.999))

for epoch in range (max_epoch) :

class Discriminator (nn.Module) :

for idx, (images, _) in enumerate (data_loader):
def _ _init_ (self, input_size=784, num_classes=1): # Training Discriminator
super (Discriminator, self).__init__ () ¥ = images.to(DEVICE)

self.layer = nn.Sequential( ¥ _outputs = D(x)

noTlinear (input size, 512), D_x_loss = criterion(x_outputs, D_labels)
nn.LgakyReLU(O.Z), z = torch.randn (batch_size, n_noise).to (DEVICE)
nn.Linear (512, 256), z_outputs = D(G(z))

nn.LeakyReLU(0.2), D_z_loss = criterion(z_outputs, D_fakes)
nn.Linear (256, num_classes), D loss = D_x _loss + D_z loss

nn.Sigmoid(),
) D.zero_grad()

def forward(self, x): g_é;isélzz;%zard()

ko LA
rgturn v - # Training Generator ) .
- z = torch.randn (batch_size, n_noise) .to(
DEVICE)
z_outputs = D(G(z))
G_loss = criterion(z_outputs, D_labels)

G.zero_grad()
G_loss.backward()
G_opt.step()



MinMax Loss Function for GANs

The MinMax loss function for a GAN is expressed as:

minmax V(D, 6) = By, 108 D)) + By _p,(s)llog(1 — D(G(2)))]

» G is the generator, which tries to minimize this function against D.
» D is the discriminator, which tries to maximize this function.
P> x are samples from the real data distribution pyata.

P z are input noise variables from distribution p,.



Derivation for the Value Function

The value function for a GAN is given by:
V(D, G) = Expy(x)[108 D(X)] + Ezp, () [log(1 — D(G(2)))]

To find the optimal discriminator, we calculate the derivative of V(D, G) with respect
to D and set it to zero. The derivative is given by:

O = (Bupuna (01108 D)) + 5 (Erpollog(1 — D(G(2))))

This simplifies to:
g _ pdata(x) B PZ(Z)
oD D(x) 1—-D(G(2))




Setting g—g = 0 for optimality, setting y = G(z), we find:

paaax) _ pg(x)
D(x) 1-D(x)

From the optimality condition, the optimal D(x) that discriminates between real data
x and generated data G(z) is:

_ Pdata(X)
DO) = D) + ()

where pg(x) is the density of generated data. This form of D(x) maximizes the
probability of correctly identifying real and generated samples.



Replace Value Function using JS-Divergence

By substituting the optimal discriminator D(x) into the objective function, we have:

V(D*, G) = Exppu() ['Og (M)}  Baepyto [Iog (1 - Pdata(ig)(i)/)g()o>:|

The Jensen-Shannon divergence between two distributions pgata and pg is defined as:

2pdata (X) ] 2pg(x) :|
Pdata (X) + ,Dg(X) (X) + pg(X)

1
+ =y~ [Iog
2 pe Pdata

N[ —

Js(pdataHpg) = 7Eprdata |:Iog

The optimal V(D, G) can be linked to the Jensen-Shannon divergence:
V(D, G) = —2log 2 + 2J5(Pdatal| Pg)
When p, = pgata, the JS divergence reaches its minimum of 0, and hence:

min V(D, G) = —2log?2



Backpropagation with Gradient
The Binary Cross-Entropy Loss for a single data point with true label y and predicted
probability ¥ is defined as follows: For a batch of data, the loss is usually computed as
the average over all instances:

N
BCELoss = — Z yilog(§i) + (1 — yi) log(1 — 9;)) (1)
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Figure: Backpropagation for GAN



Shortcoming and Improvement
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Figure: 1. Diminished Gradient
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Figure: 2. No Convergence

Figure: 4. Highly sensitive to hyperparameters



WGAN and WGAN-GP
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Figure: Visualization for Vanishing Gradient



Mathematics Derivation for Wasserstein GAN

The Wasserstein distance is the minimum cost of transporting mass in converting the
data distribution p to the data distribution g. It is mathematically defined as the
greatest lower bound (infimum) for any transport plan:

WP, P)= inf E oy [llx—
(Pr, Pg) e o) Eoen) SIx =yl

where T(P,, Pg) denotes the set of all joint distributions y(x, y) whose marginals are
Pr and Pg, respectively.

L = Exp,[D(x)] = Ezp.[D(G(2))] +A Ezp. [(| V2 D(R)]2 — 1)?] (2)

Original WGAN Loss Gradient Penalty

Hint: Kantorovich-Rubinstein duality and 1-Lipschitz



DCGAN
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Figure: Deep Convolution Generative Adversarial Network



Conditional-XXX-GAN
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Figure: Conditional + ANY GAN

Hint: From unsupervised model to semi-supervised model



Enjoy the GAN zo00000000!
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